
Bundles All The Way Down

DrupalCamp NJ 2018

1. Media’s coming to core Conceptual

2. Set up a bundle Sitebuilding

3. Theme a bundle Theming

4. Bundle a bundle in a bundle Sitebuilding + Theming

5. Make a (nice) embedding workflow Sitebuilding + Theming

6. Responsive Bundles Sitebuilding

7. Lazy Loaded Bundles Sitebuilding

Obligatory Meet-Your-Host Slides
Name: John Jameson

I am: Front-end Dev
& Themer for
Princeton.edu

I am @: itmaybejj

I am not: Irish Whiskey →

Obligatory Meet-Your-Host Slides
Princeton U.’s main site migrated to D8 in 2017. We needed Media to make it...

● ...actually easy to create images and videos. No more IMCE-type-things.

● ...actually easy to select and embed things.

● ...actually easy to preview embeds and swap layouts right in WYSIWIG. No
more “save and preview and then edit again.”

● ...actually easy to combine embeds into clusters and slideshows.

And we needed HUGE images that didn’t slow the site down on mobile...

I also wanted the
config and dev work
to be easy but it
wasn’t which is why I
learned enough to fill
this hour and have a
bunch of slides left
over.

So now we have lots of inline
embed options.

● Column width with
caption at right

● Full page width

● Floating ½- and
⅓-column-width

● Actual size (aka teeny)

And bundles-of-bundles:

● Clusters
(side-by-side images,
masonry-like arrays)

● Slideshows

Our editors can pick in the node editor from
about a dozen of these view modes.

Each view mode can show different fields,
render different responsive image styles,
trigger different CSS/JS, and display
correctly(ish) in-editor.

Our in-WYSIWYG
pop-up browser is
delightfully
overengineered.

And (Almost) Everything We Used
Is On Its Way to Core

Media into Core From
drupal.org/project/ideas/issues/2786785

https://www.drupal.org/project/ideas/issues/2786785

Media into Core From
drupal.org/project/ideas/issues/2786785

What we’re talking about today... fielded
files and an embedding workflow.

What-we’re-not-but-it’s-cool-look-it-up:
● Drag-to-upload
● Better cropping
● Paste in a url and let Media guess

whether you mean YouTube or Twitter

https://www.drupal.org/project/ideas/issues/2786785

Media into Core

Here’s the modules you’ll need for now:

● Media Entity (maybe… JUST appeared in 8.4 core...I haven’t tested yet...)

● Entity Embed for WYSIWIG integration

● Entity Browser and cTools

● Media Entity Image and Video Embed Field and any other Type Providers your
site needs (see drupal.org/project/media_entity for the full list)

https://www.drupal.org/project/media_entity

Let’s Make a Bundle!

With those modules
installed, “Media
bundles” will appear
under “Structure.”

Let’s add one.

● Label

● Type
(from provider
Modules...handles
thumbnails, oembeds
etc.)

● Type Provider fields
(may appear after
picking a type).

Now add some fields...

● Add a Reference
field for whatever
type of media
you’re adding

● Pick an Allowed
Number of Values

Add additional fields as desired. Interface is the same as content types.

Common additions:

● Caption
● Credit or Byline
● Link

Here’s our “Image” bundle:

● Caption
● Two credit/bylines…

○ ...by taxonomy
○ ...freeform for

one-offs
● “Credit prefix” (e.g.,

“Photo by” or
“Video by”)

● The actual file
reference

We can now do the same, over
and over again.

E.g, for YouTube/Vimeo we’ll
need the Video Embed Field
provider, with the “Video Embed
Media” submodule (it’s
available under “Extend” after
installing the provider but isn’t
enabled by default).

Each new provider adds to
the list of types of bundles
you can create, and types of
reference fields you can add
to the bundle.

Some extend the base provider. For
Video Embed Field, for instance, the
field shows a list of installed
oEmbed providers you can enable.

Additional providers
can be found at:
drupal.org/project/video_embed_field

https://www.drupal.org/project/video_embed_field

That’s it. You’re done.

At Princeton we’ve added a
“cover image” -- we display
a static image with a play
button and only summon
the embed JS on click.

Looks nice and really helps
page load speed since JS
blocks the render thread..

We have a lot of bundles.

Not yet mentioned...but basically
work straight out of the box much as
you’d expect:

● Facebook
● Instagram
● Tweet
● Document
● Audio (local MP3)
● Video (local MP4)

If you don’t make it to Media Explained in the next hour and you get stuck getting
these to embed in CKEditor, there’s some bonus slides at the end of my deck on
how to set up Entity Embed and Entity Browser.

Let’s Theme a Bundle

Theme a Bundle
A new bundle barfs all its
fields onto the page by
default.

Switch to the “Manage
Display” tab and disable
everything you don’t
want.

Theme a Bundle
Much Better.

Theme a
Bundle
Now when we embed this
in a test page we just get
a nice video:

Theme a
Bundle
If you’re developing on
Classy, it provides some
nice wrapper classes for
the type and view mode:

Media
Media-video
View-mode-column-width

Theme a Bundle
Now you have all you need for basic
CSS…

Note that targeting the bundle hits all
that bundles view modes, and
targeting a view mode hits all bundles
with that view mode. Target both if
you want to be specific.

.view-mode-right-half {
 float: right;
 width: 50%;
 padding: 0 0 1rem 3.5%;
 Clear:right;
}

.view-mode-left-third {
 float: left;
 width: 33%;
 padding: 0 3.5% 1rem 0;
 clear: left;
}

Theme a Bundle

We can also modify our view mode’s
markup using Twig.

THIS IS OPTIONAL.

You can skip this if you are OK with
the out of the box markup.

Theme a Bundle

Go find the “media.html.twig” in your
base theme.

Look in:

core > themes > stable > templates
or
core > themes > classy > templates

It should look like this:

Theme a Bundle

It has helpful comments inline

CSS class array for the container

the HTML that will be output.

Theme a Bundle

Copy it into your theme’s templates
folder. Maybe make a “media” subfolder
to keep yourself organized.

Rename the copy in your theme to match
your bundle’s machine names:
media--[bundle].html.twig or
media--[bundle]--[view-mode].html.twig

Always: two hyphens between names,
one hyphen within names.

Theme a Bundle

Theme a Bundle
Example: Let’s group an image’s caption and byline in custom divs for our responsive
CSS, and prefix the byline (e.g. “Photo by” or “Video by”)

Desktop has columns:
Mobile is stacked:

Theme a Bundle

Theme a Bundle
We add the div we want to the Twig file using plain old HTML:

{{content|without('field_media_caption','field_byline_prefix','field_byline') }}
<div class="image-caption">
 {{ content.field_media_caption }}
 <div class="image-byline">

{% if content.field_byline|length > 2 %}
{{ content.field_byline_prefix }}

{% endif %}
 {{ content.field_byline }}
 </div>
</div>

Theme a Bundle
The original file called {{content}} , which renders all the fields at once.
We’re going to use {{content.field_machine_name}} instead.

{{content|without('field_media_caption','field_byline_prefix','field_byline') }}
<div class="image-caption">
 {{ content.field_media_caption }}
 <div class="image-byline">

{% if content.field_byline|length > 2 %}
{{ content.field_byline_prefix }}

{% endif %}
 {{ content.field_byline }}
 </div>
</div>

Theme a Bundle
We render at least one field using |without and the list of all the OTHER fields. This
way we get our all-important cache tags too.

{{content|without('field_media_caption','field_byline_prefix','field_byline') }}
<div class="image-caption">
 {{ content.field_media_caption }}
 <div class="image-byline">

{% if content.field_byline|length > 2 %}
{{ content.field_byline_prefix }}

{% endif %}
 {{ content.field_byline }}
 </div>
</div>

Theme a Bundle
We do some logic here too -- I’m only rendering the Byline’s prefix (“Photo by”) if
there’s content in the Byline field.

{{content|without('field_media_caption','field_byline_prefix','field_byline') }}
<div class="image-caption">
 {{ content.field_media_caption }}
 <div class="image-byline">

{% if content.field_byline|length > 2 %}
{{ content.field_byline_prefix }}

{% endif %}
 {{ content.field_byline }}
 </div>
</div>

Documentation can be found at twig.symfony.com if this syntax is new to you!

Theme a Bundle
Done.

Custom container:

Fields are inside container:

This field only shows up if
there’s something following it.

Let’s Bundle a Bundle in a Bundle

Bundles of Bundles
Here’s our goal -- a masonry-like
cluster where:

● each image has a number

● each caption has a number

● the captions are in a separate
div in the right order

Bundles of Bundles
We have a bundle we
named “Slides,” using the
Slideshow type provider.

We’ve defined several
view modes for Slides,
notably cluster, slideshow
and side-by-side.

Bundles of Bundles
It has...one field.

We can embed as many
media items as we want,
inside this media item.

That media item comes
with all its fields.

Bundle of Bundles
The DOM in our Twig file for the images...

<article{{ attributes.addClass(classes) }}>
 <div class="cluster-items">
 {% for key, item in content.field_group_media if key|first != '#' %}
 <div class="cluster-half cluster-item">

<div class="counter">{{ key + 1 }}</div>{{ item }}</div>
 {% endfor %}
 </div>

Bundle of Bundles
...a for loop walks through the items in field_group_media and renders each
with a counter in a div:

<article{{ attributes.addClass(classes) }}>
 <div class="cluster-items">
 {% for key, item in content.field_group_media if key|first != '#' %}
 <div class="cluster-half cluster-item">

<div class="counter">{{ key + 1 }}</div>{{ item }}</div>
 {% endfor %}
 </div>

Bundle of Bundles
The DOM in our Twig file for the captions...same for loop...

<div class="cluster-caption">
 {% for key, item in content.field_group_media if key|first != '#' %}
 <div class="cluster-caption-item">

<div class="counter">{{ key + 1 }}</div>
{{ drupal_entity('media', item['#media'].mid.value,

'caption_and_credit') }}</div>
 {% endfor %}
 </div>
</article>

Bundle of Bundles
...but this time we call the field via “drupal_entity()”...using the Caption and
Credit view mode:

<div class="cluster-caption">
 {% for key, item in content.field_group_media if key|first != '#' %}
 <div class="cluster-caption-item">

<div class="counter">{{ key + 1 }}</div>
{{ drupal_entity('media', item['#media'].mid.value,

'caption_and_credit') }}</div>
 {% endfor %}
 </div>
</article>

Note! you need to install the “Twig Tweaks” module to call drupal_entity()!

Bundle of Bundles
...the bundles we’re
referencing have a “just
caption” view mode the
actual media item field
DISABLED so we can do
this...

Bundle of Bundles
Note you have to find the variable name for the ID of the image to do this. This
means exploring the render array using the Kint module...which is another talk.

<div class="cluster-caption">
 {% for key, item in content.field_group_media if key|first != '#' %}
 <div class="cluster-caption-item">

<div class="counter">{{ key + 1 }}</div>
{{ drupal_entity('media', item['#media'].mid.value,

'caption_and_credit') }}</div>
 {% endfor %}
 </div>
</article>

Note! you need to install the “Twig Tweaks” module to call drupal_entity()!

Bundles of Bundles
That’s it.

Images are all in one
container, captions and
credits in another.

Bundles of Bundles
The rest is CSS. Our clusters are defined using floats
and defined widths because our editors wanted
control. Masonry libraries work great too.

● General .cluster-item is half width:
● Specific cluster types go full width based on

order, depending on the view mode:

Bundles of
Bundles
And if we edit this page in
the WYSIWYG editor and
switch the view mode to
“slideshow”...

Bundles of
Bundles
...we get a slideshow
instead.

The Twig file for THAT
view mode changes the
classes on the containers
to match what our
slideshow JS is looking
for.

Some Magick:
A Better Embedder

Common frustrations to (mostly) solve...
1. Media looks different from the live site in the editor. Editors often have to

save, preview, edit again.

2. Media can be hard to “grab” and edit.

3. Alt elements are often invisible to everybody but the people who need them.

Edit your themename.info.yml file (frontend not admin) and add these two lines:

ckeditor_stylesheets:
 - css/app.css

(where the path is the relative path to the css file(s) you want included

Getting your frontend CSS into CKeditor

You absolutely COULD include your all the CSS for your whole front-end theme, but
you don’t need to (and you might get some weird conflicts).

We include a subset -- media and typography only.

We’re using SASS...our Gulp file compiles a subset of our CSS (~half):

Our “app for admin” @include list
comments out any of our CSS that
isn’t relevant for inside CKeditor --
things like menu styles, page layout,
footer styles...

Note on Twig...
Confusingly...while CKEditor is happy to grab the CSS based on the Frontend
library files...IT USES THE TWIG FILES FROM THE ADMIN THEME.

Rawr.

Just make sure to copy any custom Twig you need into your admin theme.

Get it right and you’ll have a true WYSIWIG experience:

Another example: I add a nice thick border when you select a media item. Much
easier to work with. This is in our admin theme:

.cke_widget_wrapper.cke_widget_block.cke_widget_selected .media {
 border: 3px solid #e77500;
 padding: 12px;
}

Another example:

When you edit an embed, the link
goes to the entity view, NOT the edit
form. Who wants that? I know what it
looks like, I can see it in WYSIWYG:

Let’s override the JS so that it jumps
right to the edit form.

I’ve overridden the “entity_embed” library in my admin theme to replace its JS:

In MyAdminTheme.info.yml:

libraries-override:
 entity_embed/drupal.entity_embed.dialog: MyAdminTheme/entity_embed

 In MyAdminTheme.libraries.yml

entity_embed:
 Js:
 js/entity_embed.dialog.js: {}
 Css:
 Theme:
 ../../../modules/contrib/entity_embed/css/entity_embed.dialog.css: {}
 Dependencies:
 - core/drupal
 - core/jquery

I found where the link is created and appended /edit to the end of the href:

And Now the link in our embed editor
jumps straight to the entity editor. I
even stuck in a little pencil:

Example: your
editors are new to
writing good alt
elements.

Our entity browser
view shows BOTH
the media title and
the alt text, to
encourage review.

Bad and missing alts
are now more
apparent to the
editors.

And the view flags
suspicious words
(photo of, image of)
and missing alt
elements.

This is easy to do
because the entity
browsers are just views:

And in our view this is the rewrite code for that field (inline Twig...):

{{ image__alt }}
{% if ('photo' in image__alt|lower)%}

Suspicious text: "photo"
 {% elseif ('image' in image__alt|lower)%}

Suspicious text: "image"
{% endif%}

{% if image__alt|length < 1%}
 <em class="alert">Alternative text missing
{% endif %}

Some Magick:
Responsive Images

Quick Refresher on HTML5 Responsive Images
Responsive images let browsers pick the best fit image for both their pixel depth
and window width.

A desktop browser hitting our homepage pulls 1.3MB of images.

 ...a mobile browser pulls .3MB.

That reeeeally helps for perceived performance on mobile.

The code looks like this:

<img srcset=" /.../styles/third_1x_crop/example.jpg 640w,
/.../styles/half_1x_crop/example.jpg 960w"

sizes=" (min-width:120em) 26vw,
(min-width:40em) 45vw,

90vw"
src="/.../styles/half_1x_crop/example.jpg"
alt="Nathalie de Leon" >

Rather than a simple src, the browser gets a set of image urls to choose from, with
the image file’s pixel width declared inline.

<img srcset=" /.../styles/third_1x_crop/example.jpg 640w,
/.../styles/half_1x_crop/example.jpg 960w"

sizes=" (min-width:120em) 26vw,
(min-width:40em) 45vw,

90vw"
src="/.../styles/half_1x_crop/example.jpg"
alt="Nathalie de Leon" >

...and a list of breakpoints (min-widths), and how wide the image will be at each
breakpoint, defined in vw units (1vw is 1% of viewport width).

<img srcset=" /.../styles/third_1x_crop/example.jpg 640w,
/.../styles/half_1x_crop/example.jpg 960w"

sizes=" (min-width:120em) 26vw,
(min-width:40em) 45vw,

90vw"
src="/.../styles/half_1x_crop/example.jpg"
alt="Nathalie de Leon" >

...and a fallback...the old image src syntax for legacy browsers.

<img srcset=" /.../styles/third_1x_crop/example.jpg 640w,
/.../styles/half_1x_crop/example.jpg 960w"

sizes=" (min-width:120em) 26vw,
(min-width:40em) 45vw,

90vw"
src="/.../styles/half_1x_crop/example.jpg"
alt="Nathalie de Leon" >

Generating all this means any given bundle needs…

● Multiple image styles to generate different sized images

● At least one “Responsive image style” that knows…
○ Our theme’s breakpoints
○ What width the embedded image will be at each breakpoint
○ Which image styles should be included

The Responsive Image module does this and is in core, but isn’t enabled by default:

Once it’s enabled you’ll
find its settings on the
configuration tab.

Open up the settings and
you’ll see it comes with
two starter styles:

● Leave “Type” as the default.

● Fill out the sizes field with the
pattern:
(breakpoints) widths, default
width

● Select which image styles the
browser can pick from

To use the Responsive style, “Manage display” on your bundle, switch the image
format to “Responsive” and pick the style from the gear:

Clear cache, and then TEST. Use your browser’s inspector’s Network tab. Disable
cache, make your browser window narrow, and reload.

You should see your smallest image appear.
Expand your window past each breakpoint
and you should see the other sizes fill in at the
appropriate time. If not, check your “sizes” again.

NOTE: THIS CAN GET VERY
COMPLICATED.

Our

 4 common crops at

 6 common sizes led to

32 Image Styles and

21 Responsive Image Styles

Yeah i know that doesn’t quite add up because of thumbnails and oddballs

E.g., “half width” for us could be:

● half window width
● half column width
● half column width on desktop,

and full-width on mobile
● 16/9 crop, half window width
● 16/9 crop, half column width
● 16/9 crop, half column width

on desktop and full-width on
mobile

For each we have to select relevant

images from our pool of 32
possible sizes.

We’ll pick 2-6 depending on the
range of possible widths.

⅓ column width might only need
640px and 960px.

Full window width might need
640, 960, 1440, 1920, 2048, 2880

Plan ahead with a nice naming convention. I DON’T recommend “big” and “small”
unless you have a very simple site.

● Our image styles are named by CROPPING / WIDTH. E.g.:
Scale 1920
16/9 1024

● Our responsive image styles are named similarly, with notes for adjustments:
1/3 content column (full at small)
16/9 1/3 (full very small, quarter very large)

● Our machine names parallel our Foundation column classes:
small_12_medium_6
small_12_medium_8

Deep breath

Two final notes:

● 4k (3840px) image styles exceeded our server’s available RAM, resulting
in randomly missing images. We found 3k (2880px) to be a good
compromise of performance and hi-DPI awesomesauce.

● Older iPads get janky when they try to downscale images > 2048px. We
found a precisely 2048px-wide image style helped when we had anything
larger than 2048px available.

Responsiveness

Some Magick:
Lazy Loading

Lazyloaders load a placeholder -- either the smallest version of your image
or a simple spinner -- and then wait for the browser to scroll close before
swapping the placeholder with the actual image.

Sounds Great Because:

Faster initial render time & less bandwidth on “bounces.”

But:
The very users most likely to NOTICE are on slow connections.

Waiting to trigger download can mean they have to wait MANY TIMES:
once for the initial page, and again after each scroll trigger.

Maybe use it for:

● Big images at the bottom of a very long page.
● Dynamically loaded content.

Don’t use it for:
● Images only one or two flicks down. They won’t finish in time.
● Lots of small images. HTML > JS when it comes to bulk processing.

We use bLazy:
drupal.org/project/blazy which is a helper for dinbror.dk/blazy

https://www.drupal.org/project/blazy
http://dinbror.dk/blazy

Here’s its config page.

This needs to be ON.

Load invisible? (We don’t
because we manually trigger
load in JS)

How close to on-screen
should it place triggers?

Let’s edit an image’s view mode.

Blazy creates a new formatter. Switch to it:

In the image’s settings, pick your image or responsive image style. Rebuild cache.

To test, play with the throttling speed in your browser’s inspector Network tab. You
may want to create a custom super-throttled setting.

Make sure you turn it off when you are done!

You should see it images fill in now.

Note you can theme the preloader animation and add height hints.

Laziness
And you can trigger LazyLoads manually (say, on asynchronously loaded content
or slideshow slides) by initiating a Blazy() object and pointing it at a JS object.
This JS is triggered for us when someone changes a filter on our homepage:

...documentation is at dinbror.dk/blazy/ but bLazy.load() is all I’ve ever needed.

http://dinbror.dk/blazy/?ref=github

The last slide
● Official D8 Media Guide: gitbook.com/book/drupal-media/drupal8-guide

● Roadmap for Media in Core: drupal.org/project/ideas/issues/2786785

● Type Provider Modules: drupal.org/project/media_entity

I’m @itmaybejj on Drupal Slack.

See you at the afterparty.

https://www.gitbook.com/book/drupal-media/drupal8-guide/details
https://www.drupal.org/project/ideas/issues/2786785
https://www.drupal.org/project/media_entity

Cut for time: content choreography previews
Our theme crops images differently for different screen aspect ratios; anywhere
from 16x9 to 3:1. Our editors found this very hard to plan for.

Last cool editorial thing: crop previews
Now our editors can
choreograph which zone to
crop towards (top, middle,
bottom).

As they play with the settings,
the preview window shows
both extremes in a pale
letterbox:

JS in our admin theme applies the name of the crop target as a class to the
container:

jQuery(document).ready(function() {
 var tonyaSimulateLastCrop = '';
 function tonyaSimulateCrop() {
 jQuery('.thefield').removeClass(tonyaSimulateLastCrop).addClass(jQuery('.field--name-field-news-cover-crop select').val());
 tonyaSimulateLastCrop = jQuery('.field--name-field-news-cover-crop select').val();
 }
 jQuery('.field--name-field-news-cover-crop select').change(function() {
 window.setTimeout(tonyaSimulateCrop(), 100)
 });
 tonyaSimulateCrop();
});

CSS in our admin theme nicely animates a generated ::before and ::after accordingly:

.thefield .media {
 width: 100%; height: 0; padding-top: 56.25%; overflow: hidden; position: relative;
margin-bottom: 1rem;}
.thefield details .media img {
 position: absolute; top: 0; width: 100%;}
.thefield details .rendered-entity input {display: inline-block; }
.thefield details .media::before, .thefield details .media::after {
 content: " "; z-index: 10; top: 0; position: absolute; display: block;
 width: 100%;
 height: 21.5%;
 background: rgba(255,255,255,.3);
 border-bottom: 1px solid rgba(255,255,255,.75);
 transition:height .6s ease;
 }
.thefield.bottom details .media::after {
 top:auto; bottom:0; border-top: 1px solid rgba(255,255,255,.75); border-bottom:0;
}
.thefield.bottom details .media::after, .thefield.top details .media::before { height:0;}
.thefield.bottom details .media::before, .thefield.top details .media::after { height: 43%;}

Bonus: Entity Browser Configuration

Editing
What? You want to be able
to embed a bundle?

The actual embed buttons
are added under
Configuration. Add one.

Editing...
Select which media
bundles and view modes
should be available.

Editing
● Go to “Text formats

and editors”

● Add the embed
button to the toolbar

● Enable “Display
embedded entities.”

Editing
Clear Cache…

If all is well you’ll now have a
basic Embed button on your node
edit form that pops up a simple
search for any media items.

“But I wanted a nice thumbnail browser,” you say. You need a view.

You can make your own, or base yours on the Media page view.
Add an Entity Browser display to the view (or duplicate it and make your own) and add
an “Entity browser bulk select form” to the view.

Editing
Now we need to assign
this view to an entity
browser.

Go to config → Content
Authoring → Entity
Browsers and add a
browser.

Play with the display
plugin options if your
modal never appears.

Editing
Add a “View”
widget and
select your view.

Editing
Save that.

Now we need to go BACK
to our Embed button and
tell it to use this new
Entity Browser:

(Config → Authoring →
Embed buttons)

Editing
Huzzah! Our modal!

Now when you click
embed in WYSIWYG
you have a nice
browser with some
default filters.

Play with the view as
needed to make this
nice.

