
Easy Social Feeds with the Migrate API
DrupalCampNJ, Feb. 3, 2018



Eastern Standard

● Philadelphia-based marketing and 

technology agency

● Collaborative dev team

● We’re hiring!

Intros

Tom Mount

● Technology Lead, Eastern Standard

● Closet geek

● Hobbies include bass guitar and rec 

football year-round

● Email: tomm@easternstandard.com



What do our customers need?



Quick Demo

Penn Biden Center (https://pennbidencenter.global.upenn.edu) homepage showing single Twitter feed

https://pennbidencenter.global.upenn.edu


Quick Demo

PBC Homepage Component PBC content list showing created 
nodes

PBC content editing of 
individual node



Quick Demo



What is the Migrate API?



What is the Migrate API?

● Provides a Drupal-specific implementation of the ETL (Extract, Transform, Load) process.

● Extract: pull data into a system

● Transform: manipulate the data, or use the data to manipulate some other data

● Load: Save the manipulated data somewhere else for use later or by another system

● This is a very synchronous process - transforming doesn’t happen until data is extracted, and loading can’t happen until 

the transform phase has completed.

● This is also not a real-time process; data is periodically retrieved and cached for later.

● At its simplest, the Migrate API provides a way of importing structured data from some source, 

processing it, and saving it somewhere else.



What is the Migrate API?

● The API uses slightly different terms:

ETL Term Migrate API Term

Extract Source

Transform Process

Load Destination

● Each of these API terms matches a plugin for the API.
● The plugin configures the pipeline for each step of the process.



What is the Migrate API?

● Core Source Plugins
● Embedded Data Source: data that is included in the YAML configuration fileSQL data source: pull information 

from a database (but you have to roll the plugin yourself)

And that’s it! There aren’t many options for configuring source data in the core module.



What is the Migrate API?

● Core Process Plugins (not a complete list*)
● Concat: allows multiple pieces of source data to be concatenated into one string
● Default Value: allows the use of static text
● Entity Exists: looks up an entity based on source data and returns the entity ID
● Format Date: uses Drupal’s DateTimePlus class to convert dates between formats
● Static Map: converts incoming source data to a different value
● Subprocess/Iterator: processes structured data through its own pipeline 

Important to note: in most cases, multiple process plugins can be called on a single piece of source data. The output from 
one plugin is automatically piped to the input of the next plugin.

* There are plenty of additional process plugins available; see https://www.drupal.org/docs/8/api/migrate-api/migrate-process-plugins/list-of-core-process-plugins for a complete list.

https://www.drupal.org/docs/8/api/migrate-api/migrate-process-plugins/list-of-core-process-plugins


What is the Migrate API?

● Core Destination Plugins
● Config: places data into YAML config files
● Entity: stores data in entities (the type of entity can be configured)

As with source plugins, there aren’t many destination options defined in the core module.



What is the Migrate API?

With all the plugins available, what can we do with what 
we’re given out-of-the-box?

● Specify structured data manually (in YAML format 
only!), or pull in SQL data if we have time to write a 
custom plugin for our specific situation.

● Manipulate that data a bunch of different ways.
● Store the results in nodes.

Based on what we know about how the API works, what 
kinds of things should we be able to do?

● It might be cool to grab structured XML or JSON 
data off the underlying filesystem.

● Maybe we could grab that kind of data from 
another website instead?

● What if we could do something really crazy, like 
consume a third-party REST API, maybe from 
some really complex data source like Facebook, 
manipulate that data, then store that content in 
nodes?



Extending the Migrate API



Extending the Migrate API

Source Plugins

● URL: using Drupal’s 
GuzzleHttp client, allows the 
use of a URL as a data source

● File/HTTP Data Fetchers
● JSON/XML/SOAP Data Parsers
● Basic/Digest/OAuth2 

Authentication

Process Plugins

● Entity Lookup/Generate: finds (or 
creates) entities based on 
source data

● Merge: merge several source 
fields into one

● StrReplace: modifies strings
● Skip On Value: bypasses 

processing on certain values

migrate_plus

Destination Plugins

● Table: allows for storing data 
in any database table, even if 
it’s not registered with 
Drupal’s Schema API



Extending the Migrate API

As an added bonus, the migrate_plus module makes two key changes to the Migrate API:

● Migrations as entities: now migrations can be managed as Drupal entities, exported as YAML files, etc.
● Migration Groups:

● Allows migrations to be batched together and run as a group.
● Allows migrations to share a base configuration, which can be omitted or overridden in individual migrations.



Extending the Migrate API

You can also build your own plugins. I created two process plugins for my social_migration module:

● Coalesce: takes a list of inputs and returns the first non-empty value in the list.
● Permalink: creates a Twitter permalink given the account name and a tweet ID.



Case Study: Importing Facebook Content



Case Study: Importing Facebook Content

1. Create a Drupal content type to hold all the information you want to import.
2. Configure source to use url source plugin with http data fetcher and oauth2 authentication.

a. Primary source is the Graph API url and includes the desired fields.
b. oauth2 plugin must be configured with API key from Facebook Developer.
c. oauth2 plugin handles getting the token and applying it to the main call to the Graph API.

3. List all of the necessary fields within the source configuration.
4. Identify and configure an ID field in the data source to assist in caching.
5. Configure process plugin to assign source keys to the field names used in the content type, manipulating the data 

where necessary (e.g., truncating message value to 255 characters for the title field, converting the date to Drupal’s 
required format, adding descriptions to image URLs, etc.). Use the default_value plugin to set the node type and 
publishing status.

6. Set the destination plugin to entity:node to save the content as a node.



● url
● http
● oauth2
●

● coalesce
substr

Case Study: Importing Facebook Content



●

● format_date

Case Study: Importing Facebook Content



●
● property_name

id

Case Study: Importing Facebook Content



Some potential next steps:

1. If more than one Facebook account should be retrieved, create a migration group and use the 
shared_configuration section to store configuration that would otherwise be duplicated with each Facebook 
migration.

2. Add fields on the content type to store metadata about the migration process in each created node (e.g., which 
migration generated the node). This is a great place to use taxonomies!

3. Create a module that…
a. runs migrations on a cron;
b. allows content managers or site owners to add or remove migrations; or
c. specifies different permission levels so that larger organizations can control who can modify settings.

Case Study: Importing Facebook Content



Benefits of going this route:

Easy integration with Views and any sort of headless Drupal implementation you want.
2. Takes full advantage of Drupal’s ability to cache content.
3. Allows non-developers to add or modify social media platforms and properties.
4. By default, the Migrate API won’t re-import content that has already been imported, meaning content can be curated 

after it’s been imported and those changes will persist.
5. Fully compatible with content management workflows (e.g., Workbench).
6. Few to no third-party library dependencies.
7. Configuration is 100% compatible with Features or Configuration Export workflows (just be careful not to commit API 

keys to version control).

Case Study: Importing Facebook Content



Further Reading



Further Reading

● Drupal 8 Migrate API docs: https://www.drupal.org/docs/8/api/migrate-api/migrate-api-overview
● migrate_plus project page: https://www.drupal.org/project/migrate_plus
● migrate_tools project page: https://www.drupal.org/project/migrate_tools (adds Drush commands to run, roll 

back, and reset migrations)
● “Migrating XML in Drupal 8” by Kelsey Bentham: https://www.palantir.net/blog/migrating-xml-drupal-8 (one of two 

articles I used to figure out how to get the social_migration module working properly)
● “Stop Waiting for Feeds Module: How to Import RSS in Drupal 8” by Campbell Vertesi: 

https://ohthehugemanatee.org/blog/2017/06/07/stop-waiting-for-feeds-module-how-to-import-remote-feeds-in-drupal
-8/ (the second, and probably most helpful, article as I was learning about the Migrate API)

● Eastern Standard Concepts blog post which contains some more background information I didn’t include in this 
session.

● The home page for the social_migration module, now publicly available!

https://www.drupal.org/docs/8/api/migrate-api/migrate-api-overview
https://www.drupal.org/project/migrate_plus
https://www.drupal.org/project/migrate_tools
https://www.palantir.net/blog/migrating-xml-drupal-8
https://ohthehugemanatee.org/blog/2017/06/07/stop-waiting-for-feeds-module-how-to-import-remote-feeds-in-drupal-8/
https://ohthehugemanatee.org/blog/2017/06/07/stop-waiting-for-feeds-module-how-to-import-remote-feeds-in-drupal-8/
https://www.easternstandard.com/blog/2018/02/easy-social-feeds-drupal-migrate-api
https://www.drupal.org/project/social_migration


Questions




