
Editoria11y v2:
Building a
Drupal-integrated
Accessibility Checker

John Jameson • DrupalCamp NJ 2023

– a True Story –
Senior dev: "So…if you are going to build this, you
are going to need to call this class, and this
service, and…"
Me: "...how did you learn that? The first time?
Like how could I have figured that out myself?"

"Uhh…I…saw it in a module somewhere…"

 Agenda.

John Jameson • @itmaybejj

Digital Accessibility Developer

Web Development Services, Princeton University

● What I had to learn to build this, so that you too can
say that you have "seen it in a module somewhere"
○ What was I thinking??
○ JavaScript building blocks

○ Drupal building blocks

In the
beginning… ?

Ramses II obj E635,
~1200 BC

https://www.penn.museum/blog/museum/an-ancient-typo/

Birds had
accessibility

features – their
beaks indicate
the direction to

read the line

Proofreading
used to be

painstaking &
error prone

Editors were
expected to master
a body of knowledge
from arcane texts

Spellcheck took proofreading
from -arcane- to -automatic-

But accessibility-
checkers rely on

people having
mastery of arcane

knowledge

We have 3,000+ authors.
We cannot train them all.

I looked for
something intuitive
and automatic, and

of 30+ tools only
Sa11y came close

● Simple tips without
WCAG AA 4.1.2 jargon

● Installed on site, not
browser, so it appears
automatically for
everyone

"I…think I can make this fit our needs?"

My manager gave me the time and team support to fork it:

● I thought it was too easily ignored when minimized

● I wanted to remove several features to simplify

● I wanted to write much longer tips

● I wanted to rewrite the JS to improve performance

Three years later…

● v1 worked great!

I went from sending
repetitive emails to countless site owners after finding the

same issues on site after site, to receiving emails asking for

tips on writing more accessible content.

● v2 adds (synced) dismissals, site reports, theme variations,

shadow DOM testing and rewritten tips.

Quick interface tour

A little toggle button with an issue count appears

on the bottom-right of a rendered page…

(live demo at editoria11y.princeton.edu if that helps)

http://editoria11y.princeton.edu

Automatically opens if there are new issues

"Manual checks" have a one-click dismissal

● Links only titled with generic text:
“click here,” “learn more,” etc.

● Links with no text

● Links that spell out a URL

● Skipped heading levels

● Empty headings

● Very long headings

● All-bold paragraphs with no
punctuation that may actually be
headings

● LARGE QUANTITIES OF CAPS LOCK

Tests focus on content alone
● Images with no alt text

● Images with a filename as alt text

● Images with very long alt text

● Alt text that contains redundant text
like “image of” or “photo of”

● Images in links with alt text that
appears to be describing the image
instead of the link destination

… and a dozen or so others

 AXE browser plugin:

1. Links must have discernible text

2. Heading levels should only increase by one

3. Elements must have sufficient color
contrast

4. Id attribute value must be unique

5. Ensures landmarks are unique

6. All page content should only be contained
by landmarks

Less and more…
 Editoria11y:

1. Heading tag without any text
2. Table has no header cells
3. Empty table header cell
4. Image's text alternative is unpronounceable
5. Link with no accessible text
6. Manual check: was a heading level skipped?

7. Manual check: image has no alt text

8. Manual check: is this uppercase text needed?

9. Manual check: very long alternative text

10. Manual check: is this a blockquote?

11. Manual check: is this link text a URL?

12. Manual check: is opening a new window expected?

13. Manual check: possibly redundant text in alt

14. Manual check: is this link meaningful and concise?

15. Manual check: is the linked document accessible?

16. Manual check: should this have list formatting?

17. Manual check: is this video accurately captioned?

18. Manual check: long heading

19. Manual check: should this be a heading?

And I wrote a turnkey Drupal integration
● Defaults for regions-to-check and elements-to-ignore

that work well with common themes and modules

● An admin GUI to change defaults (e.g., ignored elements)

● Synched dismissals

and site-wide

 reports:

(and a WordPress plugin)

Building block 1: writing JS tests

1: JS. Editoria11y tests
page and shows
results to user

Tests are just
if() statements,
not AI or magic

Conceptually…

1. Get all the tags.

2. Check each for an alt attribute.

3. If there isn't one, display an error.

4. If there is one but it's blank,

display a manual check.

5. If there is one that ends with ".jpg,

.gif or .png," display a manual check.

 jQuery made DOM traversal easy in v1

<div id="foo">
<p class="bar">

Hi!!!

console.log($ ('#foo') .find('.bar strong') .not('.baz') .text());

→ "Hi!!!"

Converting to Vanilla JS was less…forgiving

<div id="foo">
<p class="bar">

Hi

document .getElementById ('bar') .textContent() :

I pinned these tabs for months.

DOM traversal building blocks

1. New CSS makes querySelectorAll() easy and performant:
 :is ('h1, h2, h3, h4') :not ('nav h2, footer h3')

2. Chainable traversals:
˅.querySelector(), ˄.closest(), ˃.nextElementSibling()

3. Optional-chaining returns "undefined" if the element

doesn't exist, rather than Uncaught TypeError:
myElement ?. querySelector('.inner-span')

Here's how I find elements to test

Then I traverse into each, respecting module "ignore" settings:

Ed11y.roots.forEach(root => {

 // (skipping the business logic to concatenate these results to an array)

 root.querySelectorAll(`:is(${selectorList})${ignoreList}`);

 // e.g. `:is("p"):not(".ignored p")̀

I get all the editable parts of the page, based on module settings:

document.querySelectorAll(`:is(${checkRoots})`);

// e.g `:is("main, .footer-content")

Now let's write a test looking for fake headings

Check for , unless we're in a table…

We need to get the text: for this test. How?

● .html / .innerHTML
…gets you in OWASP trouble. Avoid…

● .innerText()
…gets rendered text, including inner nodes and CSS.

● .textContent()
…gets the text node itself.

Check textContent for punctuation and length

If there is no link and no punctuation, compare the length of the strong and the p

Build a "dismissalKey" and add to the results array

Stores a reference to the node, a triggered test ID and various bits of identifying information

Why am I building an array* of results?

1. For performance
a. In order to read some properties, the element must be painted.
b. When we write, the element is queued for re-painting.
c. In order to read the next element, the page must be repainted.
d. Alternating is a huge slowdown. Read, then write.

2. For magic
a. Syncing copies of the array to servers
b. WordPress plugin uses headless runs to build in-editor alerts

* Actually Adam Chaboryk realized this is easier to code as an object when backporting it to Sa11y. Live and learn.

AXE plugin:

1. Links must have discernible text

2. Heading levels should only increase by one

3. Elements must have sufficient color
contrast

4. Id attribute value must be unique

5. Ensures landmarks are unique

6. All page content should only be contained
by landmarks

Users tolerate slowness
on click, but not on load.

Editoria11y:

1. Heading tag without any text
2. Table has no header cells
3. Empty table header cell
4. Image's text alternative is unpronounceable
5. Link with no accessible text
6. Manual check: was a heading level skipped?

7. Manual check: image has no alt text

8. Manual check: is this uppercase text needed?

9. Manual check: very long alternative text

10. Manual check: is this a blockquote?

11. Manual check: is this link text a URL?

12. Manual check: is opening a new window expected?

13. Manual check: possibly redundant text in alt

14. Manual check: is this link meaningful and concise?

15. Manual check: is the linked document accessible?

16. Manual check: should this have list formatting?

17. Manual check: is this video accurately captioned?

18. Manual check: long heading

19. Manual check: should this be a heading?

~1s

<0.1s

Performance matters because async is a lie

● JS is single threaded: "jank" is clicks waiting in line

● "Async" functions wait for their callback to get in line; they
don't run asynchronously once they are in line

● I took to breaking up slow functions with a timeout().
Timeouts don't call back until the line has cleared:

1, 2, [timeOut] 4, 5, 6 [timeOut], 3, []

Now…how to draw elements without .HTML()?

let myP = document.createElement('p');

myP.classList.add('stylish');

myP.textContent = "No Bobby Tables here";

myDivWrapper.append(myP);

…

<div><p class="stylish">No Bobby Tables here</p></div>

I explored Web Components to reduce CSS conflicts

<ed11y-element-tip>
 #shadow-root
 <div role="dialog"> …stuff… </div>
</ed11y-element-tip>

The #shadow-root is like a porous iframe –
it blocks CSS inheritance from themes.

There's a boilerplate they all start with…

class Ed11yElementTip extends HTMLElement {

 constructor() {

 super();

 }

//===== your JS =====//

}

customElements.define('ed11y-element-tip',

Ed11yElementTip);

developer.mozilla.org/en-US/docs/Web/Web_Components

They include a connectedCallback():
 connectedCallback() {

 if (!this.initialized) {

 // Get info from attributes on the tag

 this.resultID = this.dataset.ed11yResult;

 this.result = Ed11y.results[this.resultID];

 // Build DOM and attach as "shadow root"

 const shadow = this.attachShadow({mode: 'open'});

 this.wrapper = document.createElement('div');

 shadow.appendChild(this.wrapper);

Attach CSS for content and the :host

 const style = document.createElement('style');

 style.textContent = Ed11y.baseCSS + `

 :host {

 position: absolute;

 }

 .wrapper {

 color: ${Ed11y.theme.text};

 }

 shadow.appendChild(style);

Automatic observedAttributes callbacks

static get observedAttributes(){return ['data-ed11y-action'];}

attributeChangedCallback(attr, oldValue, newValue) {

 switch (attr) {

 case 'data-ed11y-action':

 let changeTo = newValue === 'open' ? true : false;

 this.toggleTip(changeTo);

<ed11y-element-tip data-ed11y-action=" observed ">

So browsers build and communicate for you

When you click "Next »":

1. My panel component calls a function from the main JS

2. The main JS changes the next tip's data attribute to "open"

3. The tip component observes the change, triggering its
function to pull content from the results array and open

The rest is
just HTML:

Building block 2: Sending data to a Drupal Module

1: JS.

2: Routes & Controllers.
Editoria11y sends
copies of results and
dismissals to the API

Refresher
— or —

Introduction

.yml files

● Human-readable files with config
for Drupal: permissions, defaults…

.module, .install files

● PHP files with specifically named
functions Drupal calls automatically

.php files

● Custom classes or implementations
of Drupal classes, called manually

Parts of a Drupal module

If these are new
concepts for you

(they were for me)

If you don't get lucky and find boilerplate

at drupal.org/docs/drupal-apis or

drupal.org/docs/develop:

1. Ask coworkers/Slack for examples of

modules that do something similar

2. Explore Core looking for functions

that do something similar

…Once you know what questions to ask,

there is decent help and boilerplate

examples out there, but I sure didn't

know what to ask at first.

https://www.drupal.org/docs/develop/drupal-apis
https://www.drupal.org/docs/develop

.permissions are straightforward

'view editoria11y checker':

 title: 'View Editoria11y checker'

 description: 'Assign to all content editors.'

'mark as ok in editoria11y':

 title: 'Mark as OK in Editoria11y'

 description: 'Adds button to suppress a manual check for

all users, if sync is enabled.'

permissions.yml lists names of permissions you want Drupal to create for you

.routing sets up my API reporting URL

editoria11y.api_report:

 path: '/editoria11y/api/results/report'

 defaults:

 _controller:

'\Drupal\editoria11y\Controller\ApiController::report'

 methods: [POST]

 requirements:

 _permission: 'view editoria11y checker'

(etc)

 JS boilerplate sends my data to my route

 let postData = async function (action, data) {

 if (!csrfToken) {

 getCsrfToken(action, data);

 } else {

 let url = `${apiRoot}${action}`;

 fetch(url, {

 method: 'POST',

 headers: {

 'Content-Type' : 'application/json' ,

 'X-CSRF-Token' : csrfToken,

 },

 body: JSON.stringify(data),

 })

The route forwards to a controller:

public function report(Request $request) {

 try {

 $results = Json::decode($request->getContent());

 $this->api->testResults($results);

 return new JsonResponse("ok");

 }

 catch (\Exception $e) {

 return $this->sendErrorResponse ($e);

 }

 }

The controller sends $results to API.php

 public function testResults($results) {

 $this->validateNumber($results["page_count"]);

 $this->validatePath($results["page_path"]);

 foreach ($results["results"] as $key => $value) {

 $this->validateNumber($value);

 if ($results["page_count"] > 0) {

 $this->connection->merge("editoria11y_results")

 ->insertFields([

 'page_title' => $results["page_title"],

 'page_path' => $results["page_path"],

(etc)

The database
takes care of the
rest based on a

"schema"

function editoria11y_results_table () {

 $data = [

 'fields' => [

 'id' => [

 'description' => 'Test result' ,

 'type' => 'serial',

 'size' => 'big',

 'not null' => TRUE,

],

 (...etc...)

 return $data;

}

function editoria11y_schema () {

 $schema['editoria11y_results'] =

editoria11y_results_table ();

 return $schema;

}

And then…it's alive!

Building block 3: getting data back

3: The .module file:
Changing pages that
Drupal delivers

1: JS

2: Routes & Controllers

 drupalSettings is how I communicate

Modules can piggyback Drupal's global JSON object:

 .module adds page_attachments:

function editoria11y_page_attachments(array &$attachments) {

$attachments['#attached']['library'][] = 'editoria11y/editoria11y';

$apiUrl = Url::fromRoute('editoria11y.api_report')->toString();

$attachments['#attached']['drupalSettings']['editoria11y']['api_url'] =

$apiUrl;

$attachments['#attached']['drupalSettings']['editoria11y']['root'] =

$config->get('content_root');

Use a $query (boilerplate…) to get our dismissals
 public function getDismissals($page_path) {

 $query = $this->database

->select('editoria11y_dismissals')

 ->fields('editoria11y_dismissals' ,

 ['uid',

 'result_key',

 'element_id',

 'dismissal_status' ,

 'page_path',

])

 ->condition('page_path', $page_path);

 return $query->execute();

(time permitting) Building block 4: making custom pages

3: The .module file

1: JS

2: Routes & Controllers

4: Admin pages:
Render arrays

Reports: more
routes, more
controllers

 public function results(): array {

 return $this->getTestResults();

 }

We process a $query into rows in an array…

$results = $this->dashboard->getResults();

foreach ($results["results"] as $record) {

 $rows[] = [

$linkToPage,

 $linkToIssuesByPage,

 $record->entity_type,

 $record->page_path,

];

Then Drupal renders the array as a <table>

$render[] = [

 '#type' => 'table',

 '#header' => $header,

 '#rows' => $rows,

 '#cache' => [

 'contexts' => ['user', 'url',],

 'tags' => ['editoria11y.dashboard',],

],

];

And voila – a table!

Element rendering syntax is documented…

I had this open in a tab the whole time:

api.drupal.org/api/drupal/elements/

What about settings pages?

Selects, text fields,
fieldsets…showing
defaults and current
settings…

Built automatically with "ConfigFormBase"

class Editoria11ySettings extends ConfigFormBase {

public function buildForm(array $form, FormStateInterface $form_state)

{

 $config = $this->config('editoria11y.settings');

 $form['setup']['content_root'] = [

 '#title' => $this->t("Check content in these containers"),

 '#type' => 'textfield',

 '#placeholder' => '',

 '#description' => $this->t('To limit checks to user-editable

containers, provide a list of CSS selectors.'),

 '#default_value' => $config->get('content_root'),

];

.schema created fields, .settings the defaults

And that's how I built Editoria11y v2

3: The .module file

1: JS

2: Routes & Controllers

4: Admin pages

Ending with links is mandatory, right?

● editoria11y.princeton.edu (demo & docs)

● git.drupalcode.org/project/editoria11y (source)

● youmightnotneedjquery.com

● drupal.org/docs/develop/drupal-apis
drupal.org/docs/develop/creating-modules

