
Should we decouple?
DrupalCamp NJ, March 14, 2023



Who am I?

Tom Mount

Sr. Solutions Engineer, Edgio

Software engineer for 20 years, 15 of those in web
development

Lived and worked in the greater Philadelphia area
for 13+ years



What are we going to cover?

Few things that this presentation will NOT do:

● I won’t tell you if you should or should not make a specific decision.
● I won’t tell you one path is better than another.
● I won’t turn this into a pros vs. cons list.

This presentation SHOULD (hopefully):

● Raise some questions.
● Help you make a more informed decision.
● Shine a light on some overlooked concerns so you can take action now.



Definitions



Definitions

Headless
hĕd′lĭs

Adjective

1. An imprecise industry buzzword that the presenter will try his hardest not to say but some 
might sneak in there anyway because despite efforts to the contrary that’s what his 
coworkers in Sales talk about all day long.

2. Referring to sites that are decoupled in some format.

See also: decoupled



Definitions

Coupled/Decoupled
(dē-)ˈkə-pəld

Adjectives

Referring to the how much the backend of a website is involved in routing and sending the initial HTML response to the frontend.

a. Tightly Coupled: the backend handles all the routing for the site and sends over all the HTML content necessary to display a page 
on the frontend.

b. Partially Decoupled: the backend handles the routing and sends over the initial HTML framework, but without some/all of the 
content to be displayed; the frontend dynamically loads content via API calls after the initial response is displayed.

c. Fully Decoupled: the backend does not handle request routing nor does it send over initial HTML content as a response. The 
frontend is considered a completely separate system to the backend. Content is retrieved from one or more backends via API 
calls.

See also: frontend/backend



Frontend/Backend
ˈfrənt-ˌend, ˈbak-ˌend 

Nouns

1. A source of neverending frustration for many web developer job-seekers when asked 
“What kind of developer are you?”

2. A shorthand for separating the interactive presentation layer (“frontend”) from everything 
else in a web stack (“backend”).

Definitions



Contextualizing the last few definitions

● Out of the box, Drupal is tightly coupled. The menus, block, views, etc. are all 
compiled when requested and served as a single chunk by Drupal (the backend).

● D8 and D9 experimented with some of the admin pages being partially 
decoupled. For those pages, the Drupal admin theme would have served the 
initial compiled HTML response, but the response would have included 
references to JavaScript libraries, and the actual admin content (eg. settings) 
would have been injected as reactive web components.

● It is possible to run Drupal as a fully decoupled architecture, where a hosted 
frontend built in React, Vue, etc. receive and respond to web requests, and Drupal 
is used as a CMS and an API service.



Framework
ˈfrām-ˌwərk 

Noun

A collection of JavaScript classes/methods that provide a standardized way of writing web 
components. Examples include: React, Svelte, Vue. These generally do not contain robust 
routing and middleware solutions, if at all.

Definitions



Meta Framework
ˈme-tə ˈfrām-ˌwərk 

Noun

A collection of JavaScript classes/methods that further abstract a basic framework to provide 
a standardized way of handling routing, middleware, etc.

Examples: Next.js is to React what Sveltekit is to Svelte, and what Nuxt is to Vue.

Definitions



Monolith
ˈmä-nə-ˌlith 

Noun
Adjective form: monolithic

A web architecture not in use much these days where the server, backend language processor 
(eg. PHP, Java, etc.), database, and CMS application were all housed on a single server, either 
physical or cloud-based (eg. Rackspace, Digital Ocean). Because this model represents a 
substantial single point of failure, most modern web apps are broken apart and hosted in 
containers or on separate servers (eg. AWS primitives like S3, RDS, EC2, etc.).

Definitions



Let’s consider decoupling.



Business 
Concerns

“Before we start, we ask important 
questions, like what are you trying 
to accomplish? What pain points 
are you trying to solve? How will we 
deliver a better customer 
experience? How fast does the 
project need to be done?”

--Molly Duggan, interview with 
Pantheon

The Whos, Whats, Whys, Whens, 
and Hows



What pain points are we trying to solve? Will some sort of decoupled 
architecture solve them?

Some typical pain points for the business include:

Business Concerns

● Speed
● Agility (ability to turn around a new product, content update, etc. in a timely 

fashion)
● Low/lost revenue

Recommendation: use “The Five Whys.”



What business goals are we aligning to? Is a decoupled architecture the best 
way to align to those goals?

Business Concerns

● Decoupled is usually a good fit for e-commerce but not always for 
marketing sites.

● How many sites are being transitioned?



Who owns the process for creating new content/updating existing content?

● Marketing and development workflows will probably change.
● Make sure everyone affected by those changes has a voice in the decision.

Business Concerns



What is the timeline for this transition?

Business Concerns

● It will always take longer than you think.
● Very few people want to completely relaunch a site all at once anymore.



How will we know if this transition was a success?

Business Concerns

● Establish KPIs.
● Remember: be SMART (Specific, Measurable, Achievable, Relevant, 

Time-Boxed).
● Document data collection methods and take baseline readings.



Team Concerns

“Now we have to go out and hire a 
new set of frontend devs because 
we decided to decouple; and it’s 
easier to hire React devs than it is 
to find Vue devs, so we’re probably 
going to have to use React for the 
new site.”

-- Edgio prospect, paraphrased

All about the Whos



Do we have developers with experience writing decoupled applications?

Team Concerns

● Decoupled JavaScript applications are generally more complex than 
managing a tightly-coupled Drupal application.

● JS applications may require more understanding of the request lifecycle.

Recommendation: start out small with a partially-decoupled architecture on 
some less-trafficked pages in a pre-production environment. Keep a short 
feedback loop with the dev team to raise any issues quickly.



Do your developers have experience writing in the framework we’re 
evaluating?

Team Concerns

● Being able to write JS doesn’t guarantee the ability to write an Angular app 
from scratch.

● Consider staff augmentation.



How big is our Frontend development team?

● FE dev in a tightly coupled stack: focus on presentation, not sitebuilding.
● FE dev in a partially decoupled stack: all of the above, plus build pipeline.
● FE dev in a fully decoupled stack: all of the above, plus routing.

The more you decouple, the more responsibility falls on the shoulders of the 
FE dev team.

Recommendation: keep your dev team, especially FE devs, in the 
decision-making process as much as possible.

Team Concerns



Technology 
Ecosystem

“Our modernisation isn’t just a 
refactoring of the tech stack. If we 
were to continue to do things in the 
same way as before there would be 
a reasonable chance we’d end up 
back where we are today.”

-- Dave Charles, Kingfisher

The nebulous “other”



What about our culture may need to change as a result of choosing a new 
decoupling strategy?

Technology Ecosystem

● Dev and deploy processes may need to change.
● Not changing dev and/or deploy processes will limit the effectiveness of 

the new architecture.

Recommendation: map your existing processes and look for process 
improvements as well as architecture improvements.



What parts of our data model may (or must) change as a result of choosing a 
new decoupling strategy?

Technology Ecosystem

● Will the JSON API serve everything you need?
● What are the interdependencies between content types?



Do we need to re-evaluate hosting partners and costs?

● Not all hosting solutions for your Drupal site support all modes of 
decoupled architecture.

● You may need to change or supplement hosting partners.
○ Different or increased cost
○ Different support structures
○ Potential DNS changes

Recommendation: any hosting provider that runs Drupal today will also 
completely support partially-decoupled architectures, even if they don’t support 
fully-decoupled architectures.

Technology Ecosystem



Will our security footprint change if we choose a new decoupling strategy?

● New API routes = new potential security holes.
○ Scraping attacks
○ Phishing/proxy attacks
○ Brand damage

● WAF
● Bot Management

Technology Ecosystem



Do we have the testing and debugging bandwidth to support this change?

● “Adding layers to your e-commerce environment can increase the time and 
skillsets required to identify the root cause of an issue and troubleshoot it.” 
-- Adobe whitepaper

● Complexity will increase over time (see also: 2nd Law of 
Thermodynamics).

Recommendation: begin working tests into your development process early, and 
choose a standard library and methodology for those tests.

Technology Ecosystem



Wrapping It Up



So…should we decouple?

Wrapping It Up

…you should definitely consider it!



Set yourself up for success if you choose to decouple.

Wrapping It Up

● Know where you are now, identify where you want to be at the conclusion 
of your project, and document how you will know you’re on track as you’re 
working.

● Give your contributors a seat at the decision-making table and get their 
feedback early and often.

● Identify any potential hidden costs around hosting, support, and staffing 
before you start.

● Choose a technology partner that has experience building decoupled 
applications, that can help guide you and your team while you work.



Wrapping It Up

Sources:

● Delivering Purpose-Driven Decoupled Experiences with Molly Duggan. Michaela Morgan. 
https://pantheon.io/blog/delivering-purpose-driven-decoupled-experiences-molly-duggan

● Headless commerce primer for growing merchants. Whitepaper from adobe.com.
● Decomposition Journey at CarGurus - monolith to microservices. Frank Fodera. 

https://www.cargurus.dev/Decomposition-Journey-at-CarGurus-monolith-to-microservices/
● Introducing Application Modernisation at Kingfisher. Dave Charles. 

https://medium.com/kingisher-technology/introducing-application-modernisation-at-kingfisher-5
994a627d4d3



Special Thanks:

● Juan Pineda
● Chris Ferrell
● Will Rowe

Wrapping It Up



Questions



Keep in touch!

Tom Mount
tmountjr@gmail.com
linkedin.com/in/tom-mount

Thank you!


