



# Kubernetes Shouldn't Be Scary: Mastering Deployments and Scaling for Web Developers

**Christopher Tineo**IDT | Deployments Engineer





# Join at slido.com #1800077







# **Audience Q&A**







# Do you know Containers?











# Do you know Container Orchestration?







# **Agenda**

- About me
- Why Kubernetes Matters for any Developer
- Key Kubernetes Concepts
- Live Demo: Deploying a Web App in Kubernetes

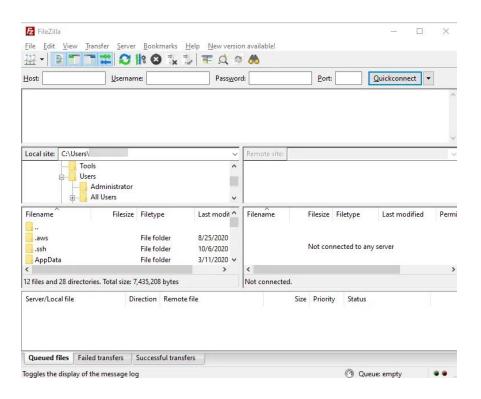
- Scaling With KEDA (Kubernetes Event-Driven Autoscaling)
- Best Practices & Tools
- Q&A and Closing Remarks



#### **About Me**

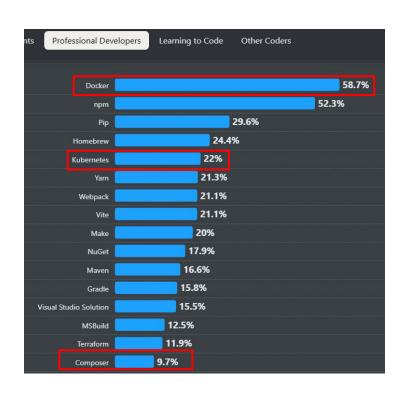
I'm a Community Organizer for the CNCF chapter in **Santo Domingo**, **Dominican Republic**.

Enjoy giving talks, conferences and everything in the **open-source community.** 






# Why Kubernetes Matters for any Developer




# **Does your Deployments look like this?**





# **Stack Developer Survey 2024**



# Essential tools for a Dev in 2025

**Container Engine (docker/podman)** 

**Container orchestrator** 

84%

Companies were using or Evaluating Kubernetes as of 2023

Based on CNCF Annual Report 2023\*



# **What Cloud Providers Say**

- 1. Trade fixed expense for variable expense
- 2. Benefit from massive economies of scale
- 3. Stop guessing capacity
- 4. Increase speed and agility (HA & Resilience)
- Stop spending money running and maintaining data centers (Spot Instances)
- 6. Go global in minutes (Multi region)



From AWS Website: Six advantages of cloud computing



# What Cloud Providers Don't Say

- You will need to deal with Vendor Lock-In.
- 2. Your code needs to adapt to your provider services and platform.
- 3. You must decide how much control you're willing to give up when selecting between (laaS/PaaS/SaaS).

#### **Cloud Computing Models**





# Build once, Deploy Everywhereht?

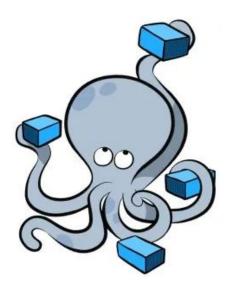


### **CNCF Cloud Native Definition v1.1**

Cloud native practices empower organizations to develop, build, and deploy workloads in computing environments (public, private, hybrid) ...



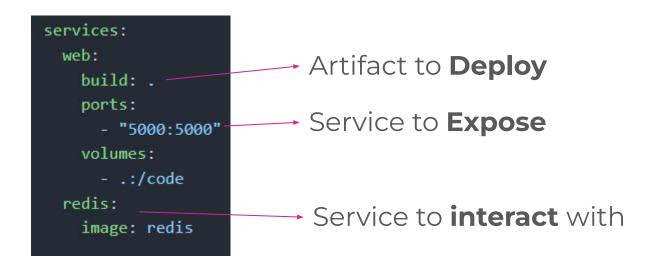



# **Key Kubernetes Concepts**



# What you're probably familiar with

#### **Docker compose**


```
services:
    web:
    build: .
    ports:
        - "5000:5000"
    volumes:
        - .:/code
    redis:
    image: redis
```





# What you're probably familiar with

### **Docker compose**





### **Service**

Is a set of pods (artifacts) that are exposed within the cluster network.

- Have an unique static IP
- Have their own dns record.

```
<service-name>.<namespace>.svc.cluster.local
frontend.default.svc.cluster.local
```



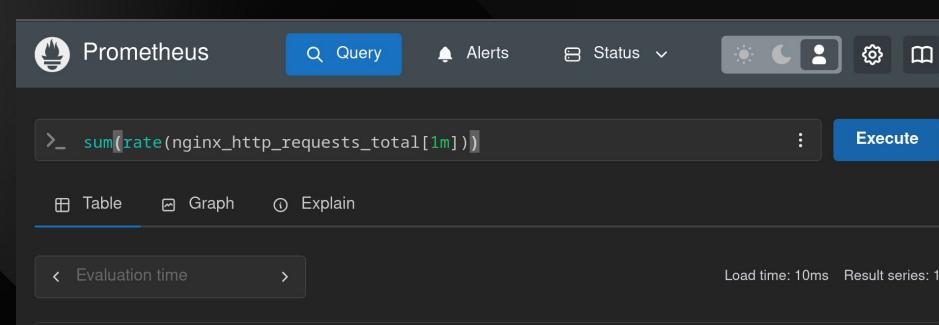
# **Deployments**

Is a resource whose job is to **guarantee** that their desired amount of replicas (artifacts) are **up and running** correctly.





# Live Demo: Deploying a Web App in Kubernetes

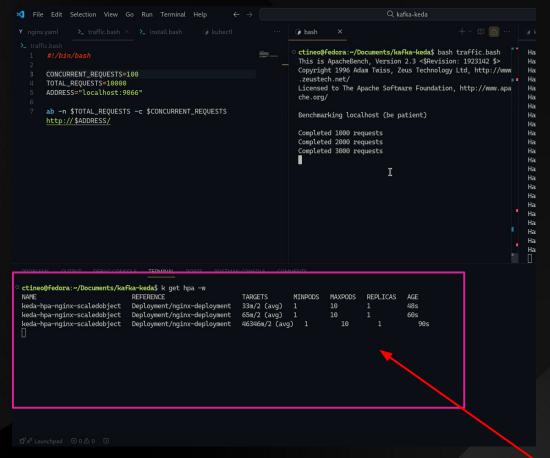



# Welcome to nginx!

If you see this page, the nginx web server is successfully installed and working. Further configuration is required.

For online documentation and support please refer to <u>nginx.org</u>. Commercial support is available at <u>nginx.com</u>.

Thank you for using nginx.






20.070651852144223

四

```
advanced:
    horizontalPodAutoscalerConfig:
      behavior:
        scaleUp:
          policies:
          - type: "Pods"
            value: 3 # Scale up by 3 pods at a time
            periodSeconds: 5 # Within a 5-second period
        scaleDown:
          stabilizationWindowSeconds: 300 # Wait 5 minutes before scaling down
          policies:
          - type: "Pods"
            value: 2 # Scale down by 2 pods at a time
            periodSeconds: 60 # Within a 1-minute period
  triggers:
  - type: prometheus
    metadata:
      serverAddress: http://prometheus-operator-kube-p-prometheus.monitoring.svc.cluster.local:9090
      metricName: nginx_connections_per_second
      threshold: '2' # Scale up when avg. connections per second exceed 2
      query: sum(rate(nginx_http_requests_total[1m])) # Average requests per second over the last minute
```





**Cloud Native Community Groups** Santo Domingo

# But my app is running Okey

Why even bother?





Community Groups
Santo Domingo

# **Risks of not scaling**

**Under Provisioning during Traffic Spikes** 

Overprovisioning in Low Traffic Periods

Inability to Handle Unpredictable Workloads

Operational Complexity of Manual Scaling





# **Kubernetes Autoscaling**

Autoscaling options for Kubernetes



#### **Cluster Autoscaler**

Adjusts the **size of a Kubernetes Cluster** based on resource demands and **optimizing cost**.



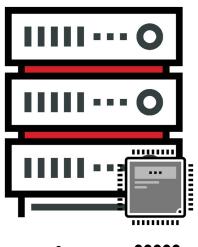
#### **Horizontal and Vertical Pod Autoscaler**

Adjust the resources allocated to pods or spread the load across a **fleet of pods**.



# Event Driven Autoscaler




Customer Orders, Processing time, Users connected



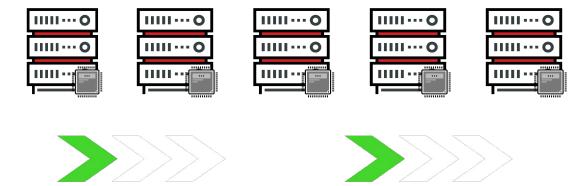
# **Vertical Scaling**

Scaling Up














# **Horizontal Scaling**

Scaling Out





# **Autoscaling**

Using Cloud Native Practices

The ability of a system to **scale automatically**, typically, in terms of computing resources. With an auto scaling system, **resources are automatically added** when needed and can scale **to meet fluctuating user demands**.



Reactive

Scale according to workload

Great option when latency is not a consideration



**Scheduled** 

Schedule auto scaling of resources

Can plan ahead to avoid latency disruption



**Predicted** 

Scaling with AI/ Machine Learning

**Intelligent Autoscaling** 



# **Benefits of Event-Driven Autoscaling**

### Scaling based on what your business matters

- 1. Amount of orders in queue
- 2. Amount pending transactions
- 3. Users connected simultaneously
- 4. Average response time of your services

And the best of it, you could define yours.



# **Kubernetes Event-driven Autoscaling**



With KEDA, you can drive the scaling of any container in Kubernetes based on events.

# **ScaledObject**

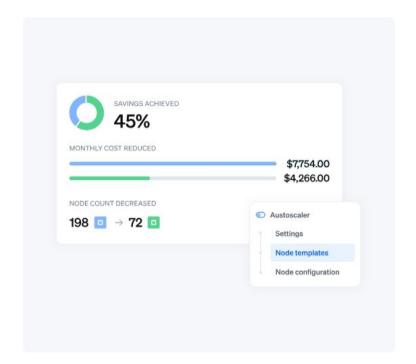
Target Service

Events (1...n)

```
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
  name: payment-service-scaledobject
  # Service to scale
scaleTargetRef:
   name: payment-service
  # Min and max replica count
  minReplicaCount: 1
 maxReplicaCount: 10
 triggers:
    # 1. If the number of messages in the Kafka topic exceeds 25, scale up
 - type: kafka
     metadata:
       bootstrapServers: kafka:9092
        topic: orders
       consumerGroup: payment-group
        lagThreshold: "25"
    # 2. If the order processing time exceeds 10 milliseconds, scale up
    - type: prometheus
     metadata:
        serverAddress: http://prometheus.monitoring.svc.cluster.local
        metricName: order_processing_time_milliseconds
        query: "histogram_quantile(0.95, sum(rate(order_processing_time_millise
conds_bucket[1m])) by (le))"
        threshold: "10"
```

# **ScaledObject**

How should I scale?


As the typical IT guy, "it depends"

My recommendation is: "Scale up aggressively and scale down conservatively"

```
spec:
  # Service to scale
 scaleTargetRef:
   name: payment-service
 # Min and max replica count
 minReplicaCount: 1
 maxReplicaCount: 10
  # Period of time to query the metrics for your events
 pollingInterval: 30 # Default: 30 seconds
  # Time to wait before the first event is triggered
 initialCooldownPeriod: 0 # Default: 0 seconds
  # Cooldown period after the event is triggered
 cooldownPeriod: 300 # Default: 300 seconds
 behavior:
   scaleUp:
     stabilizationWindowSeconds: 300
     selectPolicy: Max
     policies:
       - type: Pods
         value: 1
         periodSeconds: 5
   scaleDown:
     stabilizationWindowSeconds: 300
     selectPolicy: Min
      policies:
       - type: Pods
         value: 1
         periodSeconds: 5
```

### **Cast Al**



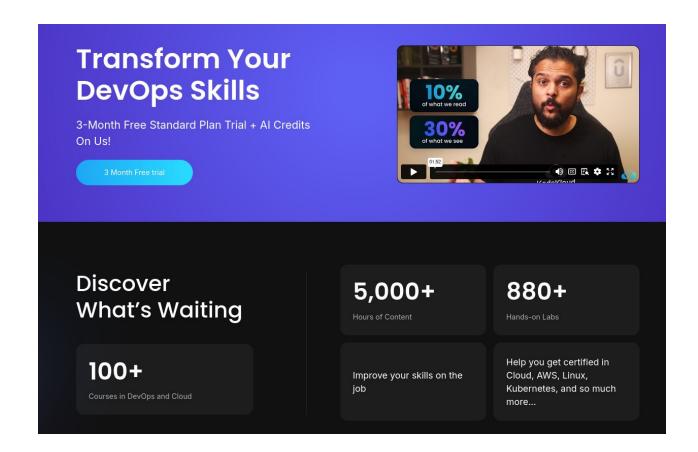


#### Other tools to consider








# You want to learn more?



### 3 months of KodeKloud Free

















# **Audience Q&A**



